The Universal Fragment of Presburger Arithmetic with Unary Uninterpreted Predicates is Undecidable

نویسندگان

  • Matthias Horbach
  • Marco Voigt
  • Christoph Weidenbach
چکیده

The first-order theory of addition over the natural numbers, known as Presburger arithmetic, is decidable in double exponential time. Adding an uninterpreted unary predicate to the language leads to an undecidable theory. We sharpen the known boundary between decidable and undecidable in that we show that the purely universal fragment of the extended theory is already undecidable. Our proof is based on a reduction of the halting problem for two-counter machines to unsatisfiability of sentences in the extended language of Presburger arithmetic that does not use existential quantification. On the other hand, we argue that a single ∀∃ quantifier alternation turns the set of satisfiable sentences of the extended language into a Σ11-complete set. Some of the mentioned results can be transfered to the realm of linear arithmetic over the ordered real numbers. This concerns the undecidability of the purely universal fragment and the Σ11-hardness for sentences with at least one quantifier alternation. Finally, we discuss the relevance of our results to verification. In particular, we derive undecidability results for quantified fragments of separation logic, the theory of arrays, and combinations of the theory of equality over uninterpreted functions with restricted forms of integer arithmetic. In certain cases our results even imply the absence of sound and complete deductive calculi.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presburger Arithmetic with Unary Predicates Is 1 1 Complete

We give a simple proof characterizing the complexity of Pres-burger arithmetic augmented with additional predicates. We show that Pres-burger arithmetic with additional predicates is 1 1 complete. Adding one unary predicate is enough to get 1 1 hardness, while adding more predicates (of any arity) does not make the complexity any worse.

متن کامل

What's Decidable About Arrays?

Motivated by applications to program verification, we study a decision procedure for satisfiability in an expressive fragment of a theory of arrays, which is parameterized by the theories of the array elements. The decision procedure reduces satisfiability of a formula of the fragment to satisfiability of an equisatisfiable quantifier-free formula in the combined theory of equality with uninter...

متن کامل

Beyond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic

Craig interpolation has emerged as an effective means of generating candidate program invariants. We present interpolation procedures for the theories of Presburger arithmetic combined with (i) uninterpreted predicates (QPA+UP), (ii) uninterpreted functions (QPA+UF) and (iii) extensional arrays (QPA+AR). We prove that none of these combinations can be effectively interpolated without the use of...

متن کامل

The First-Order Theory of Sets with Cardinality Constraints is Decidable

Data structures often use an integer variable to keep track of the number of elements they store. An invariant of such data structure is that the value of the integer variable is equal to the number of elements stored in the data structure. Using a program analysis framework that supports abstraction of data structures as sets, such constraints can be expressed using the language of sets with c...

متن کامل

Expansions of MSO by cardinality relations

We study expansions of the Weak Monadic Second Order theory of (N, <) by cardinality relations, which are predicates R(X1, . . . , Xn) whose truth value depends only on the cardinality of the sets X1, . . . , Xn. We first provide a (definable) criterion for definability of a cardinality relation in (N, <), and use it to prove that for every cardinality relation R which is not definable in (N, <...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.01212  شماره 

صفحات  -

تاریخ انتشار 2017